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We calculate the phonon-drag contribution to the transverse �Nernst� thermoelectric power Syx in a bismuth
single crystal subjected to a quantizing magnetic field. The calculated heights of the Nernst peaks originating
from the hole Landau levels and their temperature dependence reproduce the right order of magnitude for those
of the pronounced magneto-oscillations recently reported by Behnia et al. �Phys. Rev. Lett. 98, 166602
�2007��. A striking experimental finding that Syx is much larger than the longitudinal �Seebeck� thermoelectric
power Sxx can be naturally explained as the effect of the phonon drag, combined with the well-known relation
between the longitudinal and the Hall resistivity �xx� ��yx� in a semimetal bismuth. The calculation that
includes the contribution of both holes and electrons suggests that some of the hitherto unexplained minor
peaks located roughly at the fractional filling of the hole Landau levels are attributable to the electron Landau
levels.
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I. INTRODUCTION

A semimetal bismuth has been attracting longstanding in-
terest in the solid-state physics owing to its fascinating prop-
erties. The extraordinarily low carrier densities ��10−5 per
atom� and small effective masses ��10−2m0 with m0 the free
electron mass� combined with the availability of high-quality
single crystals with highly mobile carriers render it an arche-
typal material for investigating the phenomena originating
from the Landau quantization. In fact, a plethora of magneto-
oscillation phenomena, including the de Hass-van Alphen
and the Shubnikov-de Hass effects, were first discovered in
bismuth,1 illustrating distinguished roles played by the mate-
rial in the history of the solid-state physics. Bismuth remains
to be a subject of intensive ongoing studies spurred by its
intriguing properties such as multivalley degeneracy of
Dirac-type electrons,2 enhanced spin-orbit interaction on the
surface,3 strong diamagnetism advantageous for the potential
observation of the quantum spin-Hall effect.4,5

The target of the present paper is the thermoelectric re-
sponse of bismuth in a quantizing magnetic field. In a mag-
netic field B applied perpendicular to the temperature gradi-
ent �T, the thermopower tensor contains not only the
longitudinal �Seebeck effect, Sxx� but also the transverse
�Nernst effect, Syx� components, where we set the direction
of �T and B as the x and z directions, respectively. It is
worth mentioning that the Nernst effect was also originally
discovered in bismuth.6 Magneto-oscillations of Sxx and Syx
due to the Landau quantization have been extensively stud-
ied in two-dimensional electron gases �2DEGs�.7 The effect
of the Landau quantization is expected to be less easily ob-
served in three-dimensional �3D� materials. Nevertheless, the
initial observation of the magneto-oscillation in the thermo-
electric coefficients of bismuth dates back to several decades
ago.8–10 The thermopower of bismuth has attracted renewed
interest since the publication of recent experimental works

by Behnia et al.11,12 They extended the measurement to
lower temperatures ��0.3 K� and higher magnetic fields
��30 T� and reported prominent magneto-oscillations that
rather appear as a series of discrete peaks11 and further, small
features in the ultraquantum limit that possibly signals the
fractional quantization in three dimensions.12 The oscilla-
tions in the thermopower were much more pronounced than
the oscillations in the resistivity �the Shubnikov-de Haas os-
cillations�. Interestingly, the Nernst signal Syx was found to
be much larger than the Seebeck signal Sxx in bismuth, in
marked contrast to the case in 2DEGs, where generally Sxx
� �Syx�. Moreover, the line shape of Syx in bismuth was quite
unlike that in 2DEGs: the former takes a peak when the
chemical potential crosses a Landau level �as is the case in
Sxx for 2DEGs�, while in 2DEGs, Syx changes sign.7 The
amplitudes of the peaks were large ��mV /K�, and the peak
heights rapidly increased with temperature. These findings,
as well as the origin of small peaks located between the main
peaks attributable to the Landau levels of the holes, remain
unexplained. In an initial attempt toward the understanding,
the present authors extended to 3D the theory for 2DEGs by
Nakamura et al.13 that invokes the edge-current picture.14

Although the calculation qualitatively reproduced the main
peaks of the experimental traces, the amplitudes were found
to be orders of magnitude smaller ��10 �V /K�. Further-
more, the theory failed to reproduce the strong temperature
dependence. Note that the thermopower originating from the
edge current corresponds to the contribution of the carrier
diffusion in the clean limit in a quantizing magnetic
field.13,15,16 Inclusion of disorders was shown to further re-
duce the magnitude.15,17 Therefore, the experimentally ob-
served large-amplitude oscillation is not attributable to the
diffusion contribution.

In the present paper, we show that the large amplitude, the
temperature dependence, and the dominance of Syx over Sxx
can be consistently explained as the effect of the phonon
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drag in the system containing both holes and electrons as
carriers. Note that the phonon-drag contribution is known to
play a dominant role also in 2DEGs.7 Preliminary results of
the phonon-drag contribution that consider only holes as car-
riers were already presented in Ref. 14. Here we describe
more refined calculation that takes account of contributions
of electrons, the charge neutral condition, and the Zeeman
splitting neglected in Ref. 14. The calculation suggests that
the minor peaks that appear at locations where fractional
numbers of the hole Landau levels are filled actually origi-
nate from electron Landau levels.

II. PHONON-DRAG CONTRIBUTION TO
TRANSVERSE THERMOPOWER

The Hamiltonian of the system, with a magnetic field B
and a small electric field Fy applied in the z �trigonal axis of
bismuth� and y directions, respectively, is given by

Ha =
1

2
�p − eaA�Ma

−1�p − eaA� + �ga�BB − eaFyy , �1�

where A= �−By ,0 ,0� denotes the vector potential and �
= �1 /2 the spin. The suffix a is used throughout the paper to
indicate the quantity either of a hole �a=h� or of an electron
�a=e�, with eh=e and ee=−e �e�0�. The effective mass ten-
sors for holes and electrons are

Mh = �mhx 0 0

0 mhx 0

0 0 mhz
� �2�

and

Me = �mex 0 mexz

0 mey 0

mexz 0 mez
� , �3�

respectively.18 The values of the components are listed in
Table I. The eigenenergy of the Hamiltonian �1� in first order
of Fy reads

Ea�n,kz,�� = �	a	n +
1

2

 +

�2kz
2

2maz
+ �ga�BB − eaFyY0a

�4�

with the cyclotron frequency 	a�eB /ma, where the cyclo-
tron mass ma is given by mh=mhx and me=�det Me /mez.

22,23

The corresponding eigenfunction is 
a�y−Y0a ;n ,kx ,kz�
=�a�y−Y0a ;n�exp�i�kxx+kzz��, where Y0h=�kx / �eB�, Y0e
=−��kx−kzmexz /mez� / �eB�, and

�a�y ;n� � �2nn ! ��la�−1/2e−y2/�2la
2�Hn�y/la� , �5�

with the magnetic length la=�� / �may	a� represented as lh
=�� / �eB� and le=�me /mey

�� / �eB�.
We now describe our calculation of the phonon-drag ef-

fect. The phonon-drag thermopower in a magnetic field was
studied for bismuth by Sugihara24,25 and for a GaAs/AlGaAs
2DEG by Kubakaddi et al.26 We here closely follow Sugiha-
ra’s calculation. The difference from his calculation is that

we treat the Fermi and Bose distributions exactly and evalu-
ate the magnetic-field dependence numerically. For the cal-
culation of the thermopower, there are two equivalent ap-
proaches. In the Q approach, we calculate the electric current
under a temperature gradient, while in the 
 approach, we
calculate the heat current under an electric field. The two
approaches are related through the Kelvin-Onsager
relation;27 Syx�B�=
xy�−B� /T, where 
xy is the Peltier coef-
ficient. Here we follow the 
 approach. Carriers accelerated
by the electric field Fy “drag” phonons because of carrier-
phonon interaction and thus generate the heat current of
phonons. The heat currents of holes and electrons are negli-
gibly smaller than that of phonons. Then the Peltier coeffi-
cient is given by 
xy =Qx�xx /Fy, where Qx denotes the heat
current of phonons in the x direction and we used the relation
�xx� ��yx� characteristic of the systems that contain both
holes and electrons as carriers, where �xx and �yx denote the
longitudinal and the Hall resistivities, respectively.

At low temperatures we may neglect all lattice excitations
except acoustic phonons with the energy �	q and the wave
vector q, which are generated through deformation coupling.
The heat current of phonons in the x direction is then given
by

Qx =
 dq

�2��3�	qvs
qx

q
g�q� , �6�

where 	q=vsq, vs is the group velocity of the phonons, and
g�q�=Nq−Nq

�0� represents the displacement of the phonon
distribution Nq from its equilibrium Bose distribution Nq

�0�. In
order to estimate the displacement, we use the Boltzmann
equation in the steady state;

TABLE I. Parameter values used in our calculation, taken from
Refs. 19–21. We calculated the Zeeman energy of electrons by
Smith’s method �Ref. 22� using the effective masses in Ref. 19.

Hole Electron

Effective mass �m0�c mhx=0.06289 mex=0.26

— mey =0.00113

mhz=0.6667 mez=0.00443

— mexz=−0.0195

Zeeman energy g�B 2.16�	h
d 0.5849�	e

b

Deformation potentiale Dh=1.2 eV De=2.2 eV

Band gap at L point Eg=15.3 meVc

Band overlap �0=38.5 meVc

Group velocity of phonons vs=2�103 m /se

Density �=9.75�103 kg /m3

Size of the sample W=2.2 mm, L=4.0 mma

aReference 11.
bReference 22.
cReference 19.
dReference 20.
eReference 21.
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	 �Nq

�t



carrier
+ 	 �Nq

�t



relaxation
= 0. �7�

The first term on the left-hand side represents the change in
the phonon distribution due to interaction with carriers and
the second term represents that due to other interactions such
as boundary scattering, phonon-phonon interaction and im-
purity scattering. These two terms are balanced in the steady
state.

We estimate the quantity ��Nq /�t�carrier in the Born ap-
proximation as

	 �Nq

�t



carrier
= �

�,��

�W�em����,��f���1 − f��

− W�ab���,���f��1 − f���� , �8�

where f�= f�E���� is the Fermi distribution of carriers in a
state �. Each � represents the set of three quantum numbers
�n ,kx ,kz�, and W�em���� ,�� and W�ab��� ,��� are the transition
probabilities from a state � to a state �� by emitting or ab-
sorbing a phonon, respectively, given by Fermi’s golden rule,

�W�em� = Nq + 1

W�ab� = Nq
� �

2��Vq�2

�
��
���e

�iq·r�
���2

� ��Ea���� − Ea��� − �	q� �9�

with �Vq�2=Da
2�q / �2�Vvs�, where �, V, and Da are the bis-

muth density, the sample volume, and the deformation po-
tential of carriers, respectively. Expanding Eq. �8� in O�Fy�
we have the first term in Eq. �7�. In the second term, we use
the relaxation-time approximation; ��Nq /�t�relaxation=−g�q� /
�r�q�. The carrier-phonon interaction changes the phonon
distribution, but other interactions make the nonequilibrium
distribution relax back to the equilibrium one in time �r.
Solving Eq. �7� with respect to g�q�, we obtain

g�q� = −
�Fyq̃a

kBTB
Nq

�0��Nq
�0� + 1�

�tot�q�
�c�q�

, �10�

where

1

�c�q�
�

2�

�
�Vq�2 �

�,��

��
a�����exp − iq · r�
a�����2

�
f��1 − f���

Nq
�0� + 1

��Ea���� − Ea��� − �	q� , �11�

�tot�q�−1=�r�q�−1+�c�q�−1, and q̃h=qx, q̃e=qx−qzmexz /mez. At
low temperatures, the phonons in a bismuth single crystal are
known to be ballistic and the boundary scattering is
dominant,10,24,28 and therefore we set �tot�q�−1�vs /L, where
L is the length in the x direction. By plugging Eq. �10� into
Eq. �6�, we have

Qxa

Fy
= −

1

�2��4

e�LDa
2

2kBT�
�
n,n�

 dqqxq̃aqNq

�0�Ian,n��q�

�
 dkzf��1 − f�����Ea���� − Ea��� − �	q� ,

�12�

where

Ian,n��q� = �

−�

�

�a�y − �q̃a/�eaB�;n��e−iqyy�a�y ;n�dy�2

.

�13�

We thus arrive at Syx=−Qx�xx / �FyT� by adding Eq. �12� up
over the spin degree of freedom and also over electrons and
holes. The integration with respect to kz can be done analyti-
cally, and we obtain

Syx = −
1

�2��4

e�xxL

2kBT2��
�

a=h,e
Da

2maz
�

��
�

�
n,n�

 dq

qxq̃aq

qz
Nq

�0�Ian,n��q�

� f�Ea�n,kz0a,����1 − f�Ea�n�,kz0a + qz,���� �14�

with

kz0a =
maz

�qz
�	a�n − n�� + 	q� −

1

2
qz. �15�

Finally the integration with respect to q is performed numeri-
cally. For the values of �xx, we made use of the experimental
data �at 0.25 K� by Behnia.29

III. RESULTS OF CALCULATION AND COMPARISON
WITH EXPERIMENT

We first consider only holes as carriers; holes produce a
greater contribution than electrons because the effective
mass in the direction of the magnetic field, hence the density-
of-states peak at a Landau level, is larger for holes than for
electrons. In Fig. 1 we compare the theoretical and experi-
mental results at T=0.28 K. In the calculation we used the
parameter values given in Table I and the constant chemical
potential for holes �h=11.4 meV.30,31 The calculated loca-
tions and heights of the peaks are in reasonable agreement
with the experiment �except for the location of 1↑, whose
agreement is improved by the use of B-dependent chemical
potential, see below�. The good agreement infers that the
phonon drag is the dominant mechanism for the observed
Nernst effect.

Next we further include the contribution of electrons. In-
stead of using a fixed value, we now use a B-dependent
chemical potential satisfying the charge neutral condition,
that is, we determine it such that the number of electrons and
holes are equal. �Note that �e+�h=�0, where �e and �h
represent chemical potentials for electrons and holes, respec-
tively, and �0 the band overlap.� We evaluated the chemical
potentials by Smith et al.’s method.22 Smith et al. used a
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model proposed by Lax et al.,23,32 where the conduction band
becomes nonparabolic under the influence of a filled band
just below it. The energy of electron in the Lax model is
represented by

Ee	1 +
Ee

Eg

 = �	e	n +

1

2

 +

�2kz
2

2mez
+ �ge�BB , �16�

where Eg is the band gap between the conduction band and
the filled band. According to the model, the chemical poten-
tial for electrons �holes� increases �decreases� as the mag-
netic field is increased. In the actual calculation of Eq. �14�,
we linearized the Lax model �16� around Ee=�e for simplic-
ity, noting that only the energy level in the immediate vicin-
ity of the chemical potential is relevant at low temperatures.

The result is shown in Fig. 2. We again used the param-
eter values shown in Table I. The peaks originating from
holes remain basically unchanged from Fig. 1, but we now
have additional peaks resulting from electrons. Our result
suggests the possibility that the minor peaks between the
major ones observed in the experiment are due to the elec-
tron contribution, rather than to the fractional quantization as
implied in Ref. 12. The peak labeled as e1↑ may correspond
to the peak at 14 T shown in Fig. 1 of Ref. 12 �not shown in
Fig. 2�. The calculated values of Syx at the peaks due to

electrons, as well as those of holes at low magnetic-field
regime, are substantially smaller than those of the experi-
ment. However, the height of the peaks, if we disregard the
smooth background that considerably differs between the
calculation and the experiment, are in rough agreement. The
origin of the smooth background observed in the experiment
is not known at present but is presumably related to the
presence of disorders completely neglected in our calcula-
tion. Further discussion on the role of the disorder will be
given below. In the calculation of electron contribution, we
considered one of the three equivalent electron pockets ro-
tated by 120° to each other,1 one with the long axis parallel
to the heat current, and simply multiplied the result by three,
neglecting the anisotropy. We estimate that the peak heights
would become slightly smaller than those shown in Fig. 2
due to the anisotropy, although it is difficult to take full ac-
count of the anisotropy in the calculation. Compared with
Fig. 1, the peak h1↑ shifted to lower magnetic-field side
owing to decrease in �h with increasing B, and coincide
better with the experimental peak, while agreement of the
positions of other major peaks slightly worsen. The slight
inconsistency of the peak locations may be attributable to the
minute discrepancy between values of the effective masses,
the g factor, and the band parameters in the literature and
those of the sample used in the experiment. �Very recently, it
has been pointed out that slight misalignment in the direction
of the magnetic field from the trigonal axis can also cause
small shift in the peak positions.33� In Fig. 2�b� it can be seen
that the strong temperature dependence of the experimental
peak heights is reproduced well in the calculation.

IV. DISCUSSION

We now comment on several characteristics of bismuth
and/or the phonon-drag effect that are operative in yielding
the sharp and large amplitude oscillation of Syx. �i� The small
carrier density in bismuth is advantageous to the phonon-
drag effect, since carriers with small Fermi momentum
readily interact with phonons. �ii� The conservation of energy
and momentum in the carrier-phonon interaction, �2�kz�

2

−kz
2� /2maz=�vsq and kz�=kz+qz, leads to kz=O�q� �see Eq.

�15��. Here we consider only the intra-Landau-level scatter-
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FIG. 1. �Color online� The transverse thermopower Syx of holes
at T=0.28 K against the inverse magnetic field 1 /B. The solid lines
are our theoretical results and the broken lines are the experimental
results by Behnia et al. �Ref. 11� The peaks are labeled by �n, spin�.
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ing �n=n��; the inter-Landau-level scattering is practically
prohibited in a quantizing magnetic field since �	a��	q.
Since only phonons having small q are available at low tem-
peratures, only carriers with small kz are involved in the
phonon-drag events, resulting in sharp peaks where Landau
levels cross the chemical potential �see Eqs. �4� and �14��.
�iii� The dominance of Syx over Sxx is ascribable to the rela-
tion �xx� ��yx� in bismuth, which contains both holes and
electrons as carriers. The longitudinal and transverse ther-
mopowers Sxx and Syx are given by Sxx=�xx�xx−�yx�yx and
Syx=�yx�xx+�xx�yx, respectively, where � is the thermoelec-
tric tensor. For the phonon-drag effect, it has been shown that
��yx�� ��xx��0,34 resulting in �Syx�� �Sxx� for bismuth, or for
ambipolar conductor in general �and �Syx�� �Sxx� for 2DEGs
or generally for systems with �xx� ��yx��; roughly speaking
Syx in bismuth corresponds to Sxx in 2DEGs. The relation
��xx��0 also allows us to evaluate Sxx�−�yx�yx simply by
replacing �xx in Eq. �14� with �yx. Using the experimentally
obtained �yx,

29 the calculation yields Sxx having the peaks at
roughly the same positions as in Syx but �1 /20 in magni-
tude. The relation between Syx and Sxx is in rough agreement
with the experimental result shown in Fig. 1 of Ref. 11.

We note in passing that a rather large fraction of the ob-
served Nernst signal was ascribed to the diffusion contribu-
tion in Ref. 28 �see Fig. 2 in Ref. 28�, which appears to be in
a mild contradiction to our conclusion. We suspect, however,
that the treatment described in their paper may not be esti-
mating the magnitude of the diffusion contribution accu-
rately for the following reasons: �a� they used the relation
between the Nernst coefficient and the Hall angle, Eq. �1� in
their paper, which is not directly applicable to bismuth con-
taining both electrons and holes with different Fermi ener-
gies. �b� They seem to have used 	c���1� as an estimate for
the small Hall angle in bismuth �although they themselves
seem to acknowledge the discrepancy between 	c� and the
Hall angle in bismuth�. �c� They replaced �� /�� ��F

by � /�F,
which, we think, is not readily justifiable. We consider, es-
pecially for �b�, that the diffusion contribution can be smaller
than their estimate. Furthermore, their estimate is for a rather
small magnetic B=0.1 T. In a quantizing magnetic field dis-
cussed in the present paper, the edge current �or surface dia-
magnetic current� should be taken into account,13,15,16,35 as
we already mentioned in the introduction.

In our calculation, we neglected disorders in bismuth al-
together. Although the effect of disorders is expected to be
rather small in a high-quality bismuth single crystal, we be-
lieve that it constitutes the main source of the remnant dis-
crepancy between the theoretical and the experimental traces.
Inclusion of disorders introduces a width in the energy of
Landau levels represented by the first term in Eq. �4�. The
delta function in Eq. �12� denoting the energy conservation is

then replaced by a peak function having the width acquired
by the Landau levels, thereby making the peaks in Syx
broader17,26 with concomitant decrease in the peak heights.
The narrower peak width in the theoretical curves that allows
some of the peaks not well resolved in the experiment to be
resolved is thus attributable to the neglect of the disorders in
our calculation. The width in the Landau levels will also
affect the kinetics involved in the carrier-phonon interaction.
In the energy and momentum conservation mentioned above,
only the kinetic energy in the z direction, �2kz

2 /2maz, was
allowed to vary, since the kinetic energy in the x-y plane was
strictly fixed to the Landau levels. Introduction of the width
into the Landau levels alters the situation; the phonons can
now also impart their energy to the in-plane kinetic energy of
the carriers without affecting �2kz

2 /2maz. The restriction on
the extent of kz mentioned above is thus removed, enabling
the carrier-phonon scattering to take place regardless of the
value of kz. This may partly be responsible for the smooth
background observed in the experiment.

V. CONCLUSIONS

We have calculated the transverse thermopower Syx due to
the phonon-drag effect, taking both holes and electrons into
account as carriers. A series of large ��mV /K� peaks origi-
nating from holes, with smaller peaks deriving from elec-
trons in between, are obtained. The heights as well as the
positions of the peaks are close to those recently observed
experimentally by Behnia et al.,11 in stark contrast with the
calculation based on the edge-current picture, corresponding
to the diffusion contribution, in which the peak heights are
orders of magnitude smaller. This strongly suggests that the
phonon drag is the dominant mechanism in the experimen-
tally observed prominent magneto-oscillations in the Nernst
coefficient. Rather broad width of the peaks and the smooth
background not reproduced in our calculation are attributable
to the disorders neglected in our calculation.
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